
1. About the KCompiler ..3
1.1. Welcome to the KCompiler..3
1.2. How to use this document ..3
1.3. Features...3
1.4. Installation ..4
1.5. License Agreement ...4
1.6. Purchasing ..5

1.6.1. Online registration on the Internet...5
1.6.2. Phone, fax, postal mail ..6

1.7. Limitations of demo version...6
1.8. Versions history..7
1.9. About ..7

2. Common guidelines...8
2.1. What is the formula ..8
2.2. Compiling expression...8
2.3. Evaluating expression...9
2.4. Syntax errors handling..9

2.4.1. CompError property ..9
2.5. Coding guidelines ...10
2.6. KCompiler’s speed ...11
2.7. Generated code ...11

3. Configuring KCompiler...11
3.1. Auto configuration..11

3.1.1. AutoConfigure method..11
3.1.2. TAutoConfigure type...11

3.2. Expression simplifying...12
3.3. Formula analyzing ..12

3.3.1. OutOfOrder property ...12
3.3.2. EliminateBrackets property ...13

3.4. Optimization set..14
3.4.1. BackOperation property ..14
3.4.2. ParallelExecution property ..15
3.4.3. SmartLoad property...16

3.5. Data alignment..16
3.5.1. AlignMode property ..16
3.5.2. RegisterVarA function...17

4. Variables..17
4.1. Information about variable ...17

4.1.1. TVariable record..18
4.1.2. TVariable.name field ...18
4.1.3. TVariable.VarType field ...18
4.1.4. TVariable.VarAddr field ...19

4.2. Variable list ..19
4.2.1. VarCode function ..19
4.2.2. RegisterVar function ...20
4.2.3. RegisterVarExt function..20
4.2.4. GetVar function ...20
4.2.5. RemoveVar function ...20
4.2.6. ClearVars procedure ..21
4.2.7. FVariables field ...21

4.3. Data processing and compatibility with Delphi ...21
5. Functions ...22

5.1. Information about function...22
5.1.1. TFunction record ...22
5.1.2. TFunction.name field...22
5.1.3. TFunction.CallType field ..23
5.1.4. TFunction.VarList field ...23
5.1.5. TVarDef record ...24
5.1.6. TVarDef.VarType field ...24
5.1.7. TVarDef.PushStyle field ...24
5.1.8. TFunction.FuncResult field ...25
5.1.9. TFunction.StackNeeds field ..25
5.1.10. TFunction.FuncAddr field ...26
5.1.11. TFunction.Simplify field ...26
5.1.12. TFunction.InlinePart field ...26

5.2. Function list ..26
5.2.1. FuncCode function ..27
5.2.2. RegisterFunc function ...27
5.2.3. RegisterFuncExt function..27
5.2.4. GetFunc function ...28
5.2.5. RemoveFunc function ...29
5.2.6. ClearFuncs procedure ..29
5.2.7. FFunctions field...29

5.3. Parameters passing ...29
5.3.1. Differences between parameters passing...30
5.3.2. Passing parameters with ctBuilt_in type ...30
5.3.3. Compatibility with Delphi ...31
5.3.4. Routines calling methods ..31

5.4. Built-in functions..32
Appendix A. Set of types...32
Appendix B. Advanced syntax errors handling...33
Legal notices..34
Partnership...35

1. About the KCompiler

1.1. Welcome to the KCompiler

KCompiler is an unvisual Delphi component, that lets you extend your application using
arithmetical expressions (formulas) such as “4*x/2 - y*z + cos(z) + 5 - Power(z-x, 2) - 3”. This is
not a parser, but a compiler, that generates real machine code, optimized for different models and
generations of FPUs. Also it can perform deep analyzing of formula and simplify it using
mathematical rules (for example, given expression will be simplified to “2 + 2*x - y*z + cos(z) -
Power(z-x, 2)” and all operations may be performed parallel due to your settings). Also
KCompiler can handle syntax errors and report your application about them. Different options let
you generate code optimal for all existing AMD and Intel processors produced since 1995. You
also may easily extend KCompiler with your functions (5 types) and variables (10 types). Use
KCompiler to calculate formulas that are unknown at the stage of program compilation or to
achieve greater performance with your Delphi application.

KCompiler can work now with Delphi 5, 6, 7.

Copyright © 2002-2003 by DOMIN Software

All rights reserved

The author can be contacted via E-Mail:
zgonnik@math.dvgu.ru

1.2. How to use this document

This manual explains how to use the KCompiler. It provides information on how to get started
with the KCompiler, how this compiler operates, and what capabilities it offers for high
performance. You learn how to use the standard and advanced compiler features to gain
maximum performance of your application. This documentation assumes that you are familiar
with the Delphi programming language and with the basic programming methods like objects
and subroutines. It’s also good for you to be familiar with IA-32 assembler but not necessary.

1.3. Features

The features of KCompiler are:

• supported by Delphi 5, 6, 7 compilers
• common arithmetic operations +, -, *, / and parenthesis (,)
• expression simplifying
• deep analyzing of formula
• great speed of calculations
• large set of optimizations
• syntax errors handling
• data alignment
• extendable variable list

mailto:zgonnik@math.dvgu.ru

• large set of supported variables’ types
• extendable function list
• quick function parameters passing
• smart function call mode
• multithread computations support

1.4. Installation

1) Unzip KCompiler.zip to any suitable directory
2) Select “Component->Install packages…”
3) Choose “Add…”, select file “YOUR_DIRECTORY\Delphi X\KCompiler_DX0.bpl”
4) Enjoy using KCompiler – it will appear in the tab “DOMIN” on your component palette

1.5. License Agreement

KCOMPILER - PRODUCT LICENSE INFORMATION

NOTICE TO USERS: CAREFULLY READ THE FOLLOWING LEGAL AGREEMENT. USE
OF THE SOFTWARE PROVIDED WITH THIS AGREEMENT (THE "SOFTWARE")
CONSTITUTES YOUR ACCEPTANCE OF THESE TERMS. IF YOU DO NOT AGREE TO
THE TERMS OF THIS AGREEMENT, DO NOT INSTALL AND/OR USE THIS
SOFTWARE. USER'S USE OF THIS SOFTWARE IS CONDITIONED UPON COMPLIANCE
BY USER WITH THE TERMS OF THIS AGREEMENT.

1. LICENSE GRANT. DOMIN Software grants you a license to use one copy of the version of
this SOFTWARE on any one system for as many licenses as you purchase. "You" means the
company, entity or individual whose funds are used to pay the license fee. "Use" means storing,
loading, installing, executing or displaying the SOFTWARE. You may not modify the
SOFTWARE or disable any licensing or control features of the SOFTWARE except as an
intended part of the SOFTWARE's programming features. This license is not transferable to any
other system, or to another organization or individual. You are expected to use the SOFTWARE
on your system and to thoroughly evaluate its usefulness and functionality before making a
purchase. This "try before you buy" approach is the ultimate guarantee that the SOFTWARE will
perform to your satisfaction; therefore, you understand and agree that there is no refund policy
for any purchase of the SOFTWARE.

2. OWNERSHIP. The SOFTWARE is owned and copyrighted by DOMIN Software. Your
license confers no title or ownership in the SOFTWARE and should not be construed as a sale of
any right in the SOFTWARE.

3. COPYRIGHT. The SOFTWARE is protected by United States copyright law and international
treaty provisions. You acknowledge that no title to the intellectual property in the SOFTWARE
is transferred to you. You further acknowledge that title and full ownership rights to the
SOFTWARE will remain the exclusive property of DOMIN Software and you will not acquire
any rights to the SOFTWARE except as expressly set forth in this license. You agree that any
copies of the SOFTWARE will contain the same proprietary notices which appear on and in the
SOFTWARE.

4. REVERSE ENGINEERING. You agree that you will not attempt to reverse compile, modify,
translate, or disassemble the SOFTWARE in whole or in part.

5. NO OTHER WARRANTIES. DOMIN Software DOES NOT WARRANT THAT THE
SOFTWARE IS ERROR FREE. DOMIN Software DISCLAIMS ALL OTHER WARRANTIES
WITH RESPECT TO THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES
OR LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY MAY LAST, OR THE
EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO
THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU. THIS
WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE
OTHER RIGHTS WHICH VARY FROM JURISDICTION TO JURISDICTION.

6. SEVERABILITY. In the event of invalidity of any provision of this license, the parties agree
that such invalidity shall not affect the validity of the remaining portions of this license.

7. NO LIABILITY FOR CONSEQUENTIAL DAMAGES. IN NO EVENT SHALL DOMIN
Software OR ITS SUPPLIERS BE LIABLE TO YOU FOR ANY CONSEQUENTIAL,
SPECIAL, INCIDENTAL OR INDIRECT DAMAGES OF ANY KIND ARISING OUT OF
THE DELIVERY, PERFORMANCE OR USE OF THE SOFTWARE, EVEN IF DOMIN
Software HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO
EVENT WILL DOMIN Software LIABILITY FOR ANY CLAIM, WHETHER IN
CONTRACT, TORT OR ANY OTHER THEORY OF LIABILITY, EXCEED THE LICENSE
FEE PAID BY YOU, IF ANY.

8. ENTIRE AGREEMENT. This is the entire agreement between you and DOMIN Software
which supersedes any prior agreement or understanding, whether written or oral, relating to the
subject matter of this license.

Copyright © 2002-2003 by DOMIN Software

1.6. Purchasing

KCompiler price is US $49.95 (only compiled component without source).

Please note that refunds are not possible: you have the opportunity to try KCompiler’s demo
before buy it.

Select one of the following registration ways.

1.6.1. Online registration on the Internet

This is the fastest and easiest way. The ordering page is on a secure (SSL) server, ensuring that
your confidential information remains confidential. To purchase KCompiler, you can enter the
registration online on the Internet here.

Alternatively, you can go to http://www.shareit.com and enter the program number there:
176176.

http://www.shareit.com
https://secure.element5.com/register.html?productid=176176&language=English

1.6.2. Phone, fax, postal mail

If you do not have access to the Internet, you can register via phone, fax or postal mail. Please
fill and print out the “order.frm” file and fax or mail it to:

 element 5 AG / ShareIt!
 Vogelsanger Strasse 78
 50823 Koeln
 Germany

 Phone: +49-221-2407279
 Fax: +49-221-2407278
 E-Mail: service@shareit.com

US and Canadian customers may also order by calling 1-800-903-4152.

(Orders only please! We cannot provide any technical information about the program.)

US check and cash orders can be sent to our US office at:

 ShareIt! Inc.
 P.O. Box 844
 Greensburg, PA 15601, USA

 Tel. (724) 850-8186
 Fax. (724) 850-8187

 THE ABOVE NUMBERS ARE FOR ORDERS ONLY.
 THE AUTHOR OF THIS PROGRAM CANNOT BE REACHED AT THESE NUMBERS.

Any questions about the status of the registration options, product details, technical support,
volume discounts, dealer pricing, site licenses, etc, must be directed to zgonnik@math.dvgu.ru.

On payment approval (usually, in one-two business days), We'll send you the full version of the
KCompiler by email as soon as possible.

If you will not get your registered version within a reasonable amount of time (three business
days for credit card payments or two weeks for other payments), please notify us about that!
We're very sorry for any inconvenience caused by those delays.

Important: when filling the order/registration form, please verify that your e-mail address is
correct. If it will not, we'll be unable to send you the full version.

Copyright © 2002-2003 by DOMIN Software

1.7. Limitations of demo version

• copyright message box appears when formula is being compiled
• only up to 10 functions may be added

mailto:service@shareit.com
mailto:zgonnik@math.dvgu.ru

• only up to 2 variables may be added
• only ctBuilt_in function type is available
• AutoConfigure method is not available

1.8. Versions history

KCompiler v.1.20

• Built-in functions were removed – any external function can be now the same as the
built-in one

KCompiler v.1.11

• Optimizer was changed a few
• Compilation process became faster, KCompiler’s size became smaller

KCompiler v.1.10

• KCompiler now can rearrange operations order and replace them to achieve greater
performance

• Operations now can be executed in parallel by all existing Intel and AMD processors
produced since 1995

• All integer types added
• Functions may be called faster if they use less then 8 FPU data registers
• New mode of passing parameters to functions added

KCompiler v.1.01

• Some bugs fixed
• Floating-point constants now use as small area of memory as possible to contain them
• Data alignment added

KCompiler v.1.00

• At last I have realized my project! Generated code is as fast as Delphi’s :(

KCompiler v.0.8, 0.9

• New types of functions added
• Some bugs fixed

KCompiler v.0.7

• This is the first really working version of KCompiler. Only 70% of project is realized, but
it is working!

1.9. About

KCompiler

Copyright © 2002-2003 by DOMIN Software

E-Mail: zgonnik@math.dvgu.ru
Web-Page: http://www.dominsoft.narod.ru

2. Common guidelines

This chapter will explain you how to use KCompiler and will tell you about the data that
KCompiler operates.

2.1. What is the formula

The formula that KCompiler operates is an ANSI string (AnsiString Delphi type). Its format may
be described in EBNF as the following:

Formula ::= Term { (‘+’ | ‘-’) Term }
Term ::= Factor { (‘*’ | ‘/’) Factor}
Factor ::= Real number | Variable | Function | ‘(’ Formula ‘)’
Real number ::= Number | Number (‘e’ | ‘E’) Integer number
Number ::= Integer number | Integer number ‘.’ Unsigned integer
Integer number ::= Unsigned integer | (‘+’ | ‘-’) Unsigned integer
Unsigned integer ::= Digit | Digit Unsigned integer
Digit ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
Variable ::= Identifier
Identifier ::= First symbol | First symbol IdEnd
First symbol ::= ‘_’ | ‘a’ .. ‘z’ | ‘A’ .. ‘Z’
IdEnd ::= Symbol | Symbol IdEnd
Symbol ::= ‘_’ | ‘a’ .. ‘z’ | ‘A’ .. ‘Z’ | ‘0’ .. ‘9’
Function ::= Identifier | Identifier ‘(‘ Actual parameters ‘)’
Actual parameters ::= Formula | Formula ‘,’ Actual parameters

Note1: formulas with integer formal parameters have serious limitation described in section
“5.3. Parameters passing”.

Note2: KCompiler doesn’t make differences between uppercase and lowercase letters, i.e. it is
case-insensitive. Any number of spaces and control characters symbols may be added – they will
be removed by KCompiler in the right way (i.e. if formula with spaces contains syntax errors,
but these errors disappear while removing spaces, these errors still stay).

2.2. Compiling expression

There probably two ways to get machine code representation of given formula:

1) Set AutoCompile property to TRUE and assign ExprString property to required formula

Example:
{… your code}
KCompiler1.AutoCompile := true;

http://www.dominsoft.narod.ru
mailto:zgonnik@math.dvgu.ru

KCompiler1.ExprString := ‘x+4’;
{… your code}

2) Assign ExprString property to required formula and call Compile method

Example:
{… your code}
KCompiler1.ExprString := ‘x+4’;
KCompiler1.Compile;
{… your code}

2.3. Evaluating expression

To know formula’s result call Evaluate method, take sure that formula was compiled without
errors.

Example:
{… your code}
if KCompiler1.CompError = eNone then Edit1.Text := FloatToStr(KCompiler1.Evaluate)
else Edit1.Text := ‘Incorrect expression!’;
{… your code}

2.4. Syntax errors handling

KCompiler mirrors compilation status to read-only CompError property.

2.4.1. CompError property

Type

TError

Declaration

TError = (eNone, eDomain, eNumFormat, eValExpected, eOpExpected, eEdge, eUnknown,
eOutOfRange, eType, eVarParameter, eParameter);

Description

Error types:
eNone – compilation was successful
Example: 5+4*2-cos(x)

eDomain - error by constants calculating
Example: 5/0; ln(-5)

eNumFormat - invalid numeric format
Example: 5.5.2

eValExpected - value expected
Example: 5+

eOpExpected - operation expected
Example: 5x; 4(2)

eEdge - ')' missing
Example: (4+2

eUnknown - unknown identifier
Example: 5+unknown*2

eOutOfRange - Integer constant is out of range
Example: 11111111111111111111111111111111111111

eType - incompatible types or not supported by this version of KCompiler
Example: pow(x, y), where pow(x: extended; a: byte): extended, and x, y: double - y is incorrect

eVarParameter - var parameter is invalid
Example: pow(x, 4), where pow(var x: extended; a: byte): extended, and x: double

eParameter - number of parameters greater or less than required
Example: pow(5, 2, 4), where pow(x: extended; a: byte): extended

Note: with eDomain…eParameter errors machine code consist of simple “ret” instruction

Effect

Lets your program know compilation status and output status messages to user

2.5. Coding guidelines

This chapter contains list of differences between code generated by Delphi and KCompiler
which may not be changed via options or other ways:

1) ESP-addressing is used to access intermediate values in memory, so all functions should
change ESP register correctly due to their types (all Delphi functions support this)
2) “push val” instruction is not used – “sub ESP, imm” and “mov [ESP], val” are used instead
for parameters passing. This variant takes more space but not slower (and may be faster) for all
existing pipelined processors
3) if actual parameter’s type matches formal parameter’s type and may be unary minus operation
is applied than value will be passed avoiding using FPU registers
4) if integer format is not supported by FPU the value will be converted to the nearest supported
format as early as possible in the code due to avoid “large load after small stores” problem

2.6. KCompiler’s speed

All algorithms used in KCompiler have maximum linear difficulty or bounded by very small
constants, so the compilation process is fast enough

2.7. Generated code

Generated code is usually faster than code generated by Borland Delphi, Borland C++ and
Microsoft Visual C++ up to several times, but it may be slower than Intel’s C++ code. However,
KCompiler may work with functions faster than compilers, listed above, so if your formula
contains a lot of functions written for KCompiler, it may give significant performance
improving.

Note: results that were got during testing process are expression- and system-dependent; also
listed compilers’ purposes differ from KCompiler’s purposes, so you shouldn’t rely on contents
of this chapter in comparing compilers. This opinion is subjective.

3. Configuring KCompiler

This chapter will explain you how to configure KCompiler to achieve greater speed on your
formula.

3.1. Auto configuration

KCompiler provides AutoConfigure method to set all settings automatically.

3.1.1. AutoConfigure method

Declaration

procedure AutoConfigure(Config: TAutoConfigure);

Description

Configures KCompiler to achieve better performance with targeting processors family.

Effect

You get fast code without any work.

3.1.2. TAutoConfigure type

Declaration

TAutoConfigure = (acDefault, acAuto, acP5, acP6, acPIV, acAMD);

Description

Selects optimizations for each processor. Anywhere, OutOfOrder and EliminateBrackets
properties will be set to ooSoft and ebSoft respectively.

Table 3.1. TAutoConfigure type
–––

Config value CPU type SmartLoad BackOperation ParallelExecution
acDefault* P6 family true true true

acAuto auto N/A** N/A** N/A**
acP5 P5 family false true true
acP6 P6 family true true true

acPIV PIV family false false false
acAMD any AMD true false false

* - KCompiler was written using machine powered by Intel Pentium III 800 EB processor, so
this CPU type is default
** - CPU type will be detected automatically with “cpuid” instruction and values will be set
respectively. If CPU type can’t be recognized, default values will be loaded.

3.2. Expression simplifying

KCompiler has smart mode of expression simplifying. In the common case it calculates all
possible constants and values of functions with constant parameters, for example, “2+3*x/2*z*4-
cos(0)” will be compiled as “1+6*x*z”. However, this mode is not compatible with Delphi
(Delphi simplifies expressions like “4*3/x/2” to “12/x/2”), but it may bring great speed
increasing to your application. All constants are kept in the smallest by size floating-point format
that can contain them without loosing precision.

Examples:

“2+3*x/2*z*(3+1)-cos(0)” -> “1+6*x*z”

3.3. Formula analyzing

KCompiler provides two options to control formula analyzing: OutOfOrder and
EliminateBrackets. They are available with OutOfOrder and EliminateBrackets properties of
KCompiler component.

3.3.1. OutOfOrder property

Type

TOutOfOrder

Declaration

TOutOfOrder = (ooStandart, ooSoft, ooAgressive);

Description

Defines execution mode – may bring speed increasing, also reduces number of divisions, which
is known to be a very slow instruction.

ooStandart mode - operations are executed by their order in expression

ooSoft mode - +, -, *, / are executed out-of-order

Examples:

a1*a2*a3*a4*a5*a6*a7*a8 -> ((a1*a2)*(a3*a4))*((a5*a6)*(a7*a8))
a1/a2/a3 -> a1/(a2*a3)

ooAgressive - is the same as ooSoft

Effect

As you can see some divisions may be replaced by faster multiplication, and performance will be
improved. Also some operations don’t depend on results of earlier performed operations, so
improving parallelism may be enhanced.

3.3.2. EliminateBrackets property

Type

TEliminateBrackets

Declaration

TEliminateBrackets = (ebStandart, ebSoft, ebAgressive);

Description

Brackets will be eliminated due to mathematical rules.

ebStandart - brackets are not eliminated

ebSoft - brackets are eliminated with +, -, *

Examples:

(a1*a2*a3)*a4 -> a1*a2*a3*a4
a1+(a2+a3)+a4 -> a1+a2+a3+a4
a1*(a2+a3) -> a1*(a2+a3)

ebAgressive - brackets are eliminated with +, -, *, /. You may lose division by zero where it
should be - use with care.

Examples:

a1/(a2/a3)/a4 -> a1/a2*a3/a4
a1+(a2+a3)+a4 -> a1+a2+a3+a4
a1*(a2+a3) -> a1*(a2+a3)

Effect

This option lets compiler change order of operations given by user. This may increase effect of
OutOfOrder option.

3.4. Optimization set

KCompiler provides three options to control optimization process: BackOperation,
ParallelExecution and SmartLoad. They are available with BackOperation, ParallelExecution
and SmartLoad properties of KCompiler component.

3.4.1. BackOperation property

Type

TBackOperation

Declaration

TBackOperation = boolean;

Description

Lets KCompiler delay operations execution until FPU stack is full. Operand buried under the top
of stack will be extracted with “fxch” instruction that is executed for zero cycles by all Intel

processors since Pentium and all AMD processors since Duron. Use this option in pair with
OutOfOrder option.

false – all operations are executed immediately after operands loading

true – operation execution is delayed until the stack is full

Effect

This option lets eliminate 2-cycles operation-after-loading penalty with Intel P6 family
processors, also it allows use operands those are already in stack avoiding cache hierarchy or
memory subsystem. However, using of “fxch” instruction is not so effective with Intel Pentium 4
and AMD Athlon and Duron processors, because retirement bandwidth for these processors is
limited and instruction window is large enough, so you may see performance degrading. Use
AutoConfigure procedure to set all options automatically.

3.4.2. ParallelExecution property

Type

TParallelExecution

Declaration

TParallelExecution = boolean;

Description

Reorders operations to achieve improving parallelism. Has no effect if BackOperation is not set.

false – operations are executed by their order

true – operations are executed in parallel

Examples:

((a1*a2)*(a3*a4))*((a5*a6)*(a7*a8)) -> will be executed as: b1 = a1*a2, b2 = a3*a4,
b3 = a5*a6, b4 = a7*a8; c1 = b1*b2, c2 = b3*b4; result = c1*c2, where b1, b2, b3, b4, c1, c2 are
intermediate results.

Effect

This option lets compiler change order of operations execution due to improving parallelism
enhancing. Anywhere it may increase “fxch” instruction pressure and degrade performance with
Intel Pentium 4 and AMD Athlon and Duron processors.

3.4.3. SmartLoad property

Type

TSmartLoad

Declaration

TSmartLoad = boolean;

Description

Controls source for data.

false – all data will be loaded from FPU stack if possible.

true – all data will be loaded from FPU stack if possible, except aligned single and double
precision floating-point values.

Effect

For Intel P6 family processors and AMD Athlon and Duron processors loading aligned data from
cache is performed faster than using internal FPU structures up to 2 times, but for Intel Pentium
4 processors FPU structures are used faster.

3.5. Data alignment

KCompiler provides two ways to control data alignment: using AlignMode property and
RegisterVarA function.

3.5.1. AlignMode property

Type

TAlignMode

Declaration

TAlignMode = boolean;

Description

Controls data alignment.

false – no data alignment will be performed

true – all constants and intermediate values will be aligned by their natural boundaries:
8-bit data – at any address
16-bit data – to be contained within an aligned four byte word
32-bit data – so that its base address is multiple of four
64-bit data – so that its base address is multiple of eight
80-bit data – so that its base address is multiple of sixteen

Effect

For all x86-compatible processors a misaligned data access can incur significant performance
penalties. This is particularly true for cache line splits. However, aligned data usually requires
more space, so KCompiler has smart algorithm packing all 32- and 80-bit values into 16-byte
blocks, but single 80-bit value will still require 16 bytes of memory.

3.5.2. RegisterVarA function

Declaration

function RegisterVarA(AVariable: TVariable; var NewPlace: pointer): Integer;

Description

This function registers new variable “AVariable” and returns its handle or zero if operation was
unsuccessful. Also check for alignment is performed and unaligned variables will be reallocated
to aligned place with copying current value. “NewPlace” contains pointer to new aligned
variable’s position or to old if variable was at aligned location.

Note: variable’s copy is contained somewhere in internal structures, so after KCompiler instance
has been destroyed, value will be lost.

4. Variables

This chapter contains information that will help you to extend KCompiler’s capabilities using
variables in expression.

4.1. Information about variable

All information about variable required to use it in formula is contained in structure of TVariable
type.

4.1.1. TVariable record

Declaration

TVariable = record
 name: string;
 VarType: TVarType;
 VarAddr: pointer;
end;

Description

Contains information about variable.

4.1.2. TVariable.name field

Declaration

name: string;

Description

Determines variable’s name in formula, it may differ from variable’s real name.

4.1.3. TVariable.VarType field

Type

TVarType;

Declaration

TVarType = (vtInt8, vtUInt8, vtInt16, vtUInt16, vtInt32, vtUInt32, vtInt64, vtSingle, vtDouble,
vtExtended);

Description

Determines variable’s type, all listed types match real Delphi types; matching table is listed
below.

Matching table

Table 4.1. Supported types of variables
––

KCompiler type Delphi type
vtInt8 ShortInt

vtUInt8 Byte
vtInt16 SmallInt

vtUInt16 Word
vtInt32 Integer

vtUInt32 LongWord
vtInt64 Int64
vtSingle Single
vtDouble Double

vtExtended Extended

4.1.4. TVariable.VarAddr field

Declaration

VarAddr: pointer;

Description

Determines variable’s linear address.

4.2. Variable list

KCompiler contains several methods and data structures to add new variables and link them with
real variables in your program to provide dynamical variables redress.

4.2.1. VarCode function

Declaration

function VarCode(s: string): Integer;

Description

Returns handle of the variable named by “s” parameter.

4.2.2. RegisterVar function

Declaration

function RegisterVar(AVariable: TVariable): Integer;

Description

This function registers new variable “AVariable” and returns its handle or zero if operation was
unsuccessful.

4.2.3. RegisterVarExt function

Declaration

 function RegisterVarExt(name: string; VarType: TVarType; VarAddr: pointer): Integer;

Description

This function registers new variable with alias “name”, type “VarType”, address “VarAddr”
and returns its handle or zero if operation was unsuccessful.

Note: this function has the same effect as RergisterVar function with accordingly filled fields of
“AVariable” parameter.

4.2.4. GetVar function

Declaration

function GetVar(var AVariable: TVariable; num: Integer): boolean;

Description

This function gets description of variable with “num” handle and copies it to “AVariable”
parameter. If operation was successful returned value will be non-zero (TRUE).

4.2.5. RemoveVar function

Declaration

function RemoveVar(num: Integer): boolean;

Description

This function removes record about variable with “num” handle. If operation was successful
returned value will be non-zero (TRUE).

4.2.6. ClearVars procedure

Declaration

procedure ClearVars;

Description

Removes information about ALL registered variables.

4.2.7. FVariables field

Declaration

FVariables: array of TVariable;

Description

Contains information about all registered variables. This field is made “public” due to
optimization and simplifying work with registered variables. Use it to copy all information about
variables from one instance of KCompiler to another or to display list of registered variables.

Note: never change single elements of this array manually: it may cause an incorrect work of
KCompiler.

4.3. Data processing and compatibility with Delphi

All integer data is being processed using FPU unit. It means that there will be no overflow and
integer division and modulo operations are not supported; also generated code is slower for
addition and subtraction than using ALU unit, but may be faster for division and multiplication,

and it differs from the code compiled by Delphi. However, it’s fully compatible with
mathematical rules and user is better to see 5/2 = 2.5 instead of 5/2 = 2 as using integer division.

Note: integer division and modulo operations may be realized with functions.

5. Functions

This chapter contains information that will help you to extend KCompiler’s capabilities using
functions in expression.

5.1. Information about function

All information about function required to use it in formula is contained in structure of
TFunction type.

5.1.1. TFunction record

Declaration

TFunction = record
 name: string;
 CallType: TCallType;
 VarList: TAVarDef;
 FuncResult: TFuncResult;
 StackNeeds: Integer;
 FuncAddr: pointer;
 Simplify: boolean;
 InlinePart: array of byte;
end;

Description

Contains information about function.

5.1.2. TFunction.name field

Declaration

name: string;

Description

Determines function’s name in formula, it may differ from function’s real name.

5.1.3. TFunction.CallType field

Type

TCallType;

Declaration

TCallType = (ctRegister, ctPascal, ctCdecl, ctStdcall, ctBuilt_in);

Description

Determines function’s calling convention.

Matching table

Table 5.1. Supported types of functions
––

KCompiler convention Delphi convention
ctRegister Register
ctPascal Pascal
ctCdecl Cdecl
ctStdcall Stdcall
ctBuilt_in none

Description

As you can see, KCompiler supports all Delphi function types except Safecall. Also new
ctBuilt_in type was added. It allows compiler to pass floating-point parameters using FPU stack,
what may greatly increase performance speed, but such function usually should be written
manually using assembler or will be distributed with KCompiler component freely or not. See
more about this calling convention in chapter “5.3. Parameters passing”.

5.1.4. TFunction.VarList field

Type

TAVarDef

Declaration

TAVarDef = array of TVarDef;

Description

Contains information about function parameters. Number of parameters is equal to TAVarDef
length.

5.1.5. TVarDef record

Declaration

TVarDef = record
 VarType : TVarType;
 PushStyle : TPushStyle;
end;

Description

Contains information about one parameter.

5.1.6. TVarDef.VarType field

Description

See description of this field in chapter “4.1.3. TVariable.VarType field”.

5.1.7. TVarDef.PushStyle field

Type

TPushStyle

Declaration

TPushStyle = (psValue, psReference);

Description

Defines whether parameter should be passed by value (psValue) or by reference (psReference) –
like using “var” in Delphi.

5.1.8. TFunction.FuncResult field

Type

TFuncResult

Declaration

TFuncResult = (frInt8, frUInt8, frInt16, frUInt16, frInt32, frUInt32, frInt64, frSingle, frDouble,
frExtended);

Description

Determines function result’s type, all listed types match real Delphi types; matching table is
listed below.

Matching table

Table 5.2. Supported types of functions’ results
–––

KCompiler type Delphi type
frInt8 ShortInt

frUInt8 Byte
frInt16 SmallInt

frUInt16 Word
frInt32 Integer

frUInt32 LongWord
frInt64 Int64
frSingle Single
frDouble Double

frExtended Extended

5.1.9. TFunction.StackNeeds field

Declaration

StackNeeds : Integer;

Description

Determines how many FPU registers function needs to work correctly. Set this field to the least
possible value to achieve greater performance, however, set it to eight, if you are not sure. If this
value is greater than 8, it will be set to 8, and if it is less than 0 it will be set to 0 automatically.

5.1.10. TFunction.FuncAddr field

Declaration

FuncAddr : Pointer;

Description

Determines function’s linear address. If this value is equal to “nil”, “InlinePart” will be used.

5.1.11. TFunction.Simplify field

Declaration

Simplify: boolean;

Description

Determines whether function with constant parameters should be calculated during compilation
process.

5.1.12. TFunction.InlinePart field

Declaration

InlinePart: array of byte;

Description

If “FuncAddr” is equal to “nil”, then function’s code, containing in the “InlinePart” array
will be inserted in KCompiler’s code.

5.2. Function list

KCompiler contains several methods and data structures to add new functions and link them with
real functions in your program to use any available function in formula.

5.2.1. FuncCode function

Declaration

function FuncCode(s: string): Integer;

Description

Returns handle of the function named by “s” parameter.

5.2.2. RegisterFunc function

Declaration

function RegisterFunc(AFunction: TFunction): Integer;

Description

This function registers new function “AFunction” and returns its handle or zero if operation was
unsuccessful.

5.2.3. RegisterFuncExt function

Declaration

function RegisterFuncExt(const name, VarList: string; const CallType: TCallType; const
FuncResult: TFuncResult; const StackNeeds: Integer; const FuncAddr: pointer; const Simplify:
boolean; InlinePart: array of byte): Integer;

Description

This function registers new function with alias “name”, formal parameters “VarList”, calling
mode “CallType”, result type “FuncResult”, required FPU stack slots “StackNeeds”, address
“FuncAddr”, simplify mode “Simplify”, inline code “InlinePart” and returns its handle or zero
if operation was unsuccessful. Format of “VarList” string is listed above.

VarList format

“VarList” string consist of 4-characters pieces, each of them determines one parameter’s passing
style and its type.

Table 5.3. VarList format
––––––––––––––––––––––––––––––––––––––
r|v i08|u08|i16|u16|i32|u32|i64|f32|f64|f80
↑ ↑

passing style parameter’s type

Table 5.4. Passing style
–––

VarList’s first character KCompiler style Delphi style
r psReference “var” parameter
v psValue simple parameter

Table 5.5. Parameter’s type
–––
VarList’s 2-4 characters KCompiler type Delphi type

i08 vtInt8 ShortInt
u08 vtUInt8 Byte
i16 vtInt16 SmallInt
u16 vtUInt16 Word
i32 vtInt32 Integer
u32 vtUInt32 LongWord
i64 vtInt64 Int64
f32 vtSingle Single
f64 vtDouble Double
f80 vtExtended Extended

Example:
For function SomeFunc(x, y: double; var k, f: Integer; b: Single; v: Int64; c, a: LongWord): byte;
VarList = ‘vf64vf64ri32ri32vf32vi64vu32vu32’.

5.2.4. GetFunc function

Declaration

function GetFunc(var AFunction: TFunction; num: Integer): boolean;

Description

This function gets description of function with “num” handle and copies it to “AFunction”
parameter. If operation was successful returned value will be non-zero (TRUE).

5.2.5. RemoveFunc function

Declaration

function RemoveFunc(num: Integer): boolean;

Description

This function removes record about function with “num” handle. If operation was successful
returned value will be non-zero (TRUE).

5.2.6. ClearFuncs procedure

Declaration

procedure ClearFuncs;

Description

Removes information about ALL registered functions.

5.2.7. FFunctions field

Declaration

FFunctions: array of TFunction;

Description

Contains information about all registered functions. This field is made “public” due to
optimization and simplifying work with registered functions. Use it to copy all information about
functions from one instance of KCompiler to another or to display list of registered functions.

Note: never change single elements of this array manually: it may cause an incorrect work of
KCompiler.

5.3. Parameters passing

Information about function parameters and calling mode should be passed to KCompiler through
TFunction record, using RegisterFunc function, with CallType (see chapter “CallType field”)
and VarDef fields.

5.3.1. Differences between parameters passing

Table 5.6. Parameters passing
–––
Calling type Parameter order Clean-up GP registers FPU registers
ctRegister Left-to-right Routine Yes No
ctPascal Left-to-right Routine No No
ctCdecl Right-to-left Caller No No
ctStdCall Right-to-left Routine No No
ctBuilt_in Left-to-right* Routine Yes Yes

*With ctBuilt_in type parameters in FPU registers will be passed Right-to-left

5.3.2. Passing parameters with ctBuilt_in type

The main kind of ctBuilt_in call mode is possibility to pass as much as possible parameters using
registers. It means that you will be able to create functions as fast as built-ins. With integer
parameters it works as ctRegister call type, but additionally floating-point parameters can be
passed through FPU stack.

Number of register floating-point parameters

The number of floating-point parameters passed through FPU registers depends on StackNeeds
field of TFunction structure and is calculated as REG_PARS = min(FLOAT_PARS, 8-
StackNeeds). In this case StackNeeds field means how many additional FPU stack slots your
function requires, so total number of FPU stack slots your function may use is calculated as
TOTAL_SLOTS = REG_PARS+StackNeeds.

Parameters allocation in FPU registers

All register floating-point parameters with ctBuilt_in functions’ type are passed from right to
left. It means that the first register parameter will be deeper in the FPU stack then the last one.
After function’s work all parameters should be pulled out of FPU stack.

Example:

function SomeFunc(x, y, z, w : double; var k, f: Integer; b: Single; v: Int64; c, a: Integer): byte;
StackNeeds = 6;

Table 5.7. Parameters passing example
––

Parameter’s name Allocation
x ST(1)

y ST(0)
z stack
w stack

k address EAX
f address EDX

b stack
v stack
c ECX
a stack

5.3.3. Compatibility with Delphi

Besides floating-point parameters KCompiler supports integer parameters passing, but this mode
has serious limitations: only unary minus operation, performed in ALU unit, is supported. If you
wish to pass integer value as floating-point parameter, it will be processed using FPU unit. It
means that there will be no overflow and integer divisions and modulo operations are not
supported; also generated code is slower for addition and subtraction than using ALU unit, but
may be faster for division and multiplication, and it differs from the code compiled by Delphi.
However, it’s fully compatible with mathematical rules and user is better to see 5/2 = 2.5 instead
of 5/2 = 2 as using integer division.

Note: integer division and modulo operations may be realized with functions.

5.3.4. Routines calling methods

This chapter describes common conventions, using by routine’s call.

Results

KCompiler expects to get routine’s results where standard Delphi function should return them.

Table 5.8. Routines’ results
––

Result type Allocation
vtInt8 AL

vtUInt8 AL
vtInt16 AX

vtUInt16 AX
vtInt32 EAX

vtUInt32 EAX
vtInt64 EDX:EAX
vtSingle ST(0)
vtDouble ST(0)

vtExtended ST(0)

Note: if routine’s result is vtSingle, vtDouble or vtExtended then it always may use one FPU
register.

Calling routines

All routines, called during expression’s evaluating, should obey several simple rules:

1) EBP, EBX, ESI, and EDI registers must be preserved (all Delphi routines)
2) Function mustn’t use more FPU registers than it has required through NeedStack field
3) Result should be returned as described in “Results” section (all Delphi routines)
4) Floating-point parameters passed through FPU registers should be pulled out, for

example, using “fstp st(0)” instruction several times
5) Stack should be cleared due to function type (all Delphi routines)
6) Inline function shouldn’t contain relative “jmp” or “call” instructions targeting outside

the bounds of function
Calling routines, KCompiler uses several conventions:

1) Some parameters can be passed in registers as described above
2) Inline function gets parameters as any other function. Note that there will be no return

address for inline function, so the last stack parameter will be available on [ESP] address.
3) Routine may freely modify EAX, ECX and EDX registers
4) If function has only constant parameters and it’s “Simplify” field is set to TRUE, it will

be evaluated during compilation
5) If floating-point parameter should be passed through memory and it consist of simple

variable, it’s negation or a constant, it will be passed avoiding FPU registers
6) If inline function’s body contains “ret” instruction, it may crash the program. Consistence

of FPU and other registers will be undefined

5.4. Built-in functions

Since version 1.20 KCompiler has no built-in functions. It means that any user’s function may
have the same behavior as earlier built-ins. However, you can use highly optimized functions
containing in free “KLib.pas” library.

Appendix A. Set of types

This chapter contains all types that you will need working with KCompiler and which are not
predefined in Delphi.

Listing A.1. Set of types
–––
TError = (eNone, eDomain, eNumFormat, eValExpected, eOpExpected, eEdge, eUnknown,
eOutOfRange, eType, eVarParameter, eParameter);

TPushStyle = (psValue, psReference);

TVarType = (vtInt8, vtUInt8, vtInt16, vtUInt16, vtInt32, vtUInt32, vtInt64, vtSingle, vtDouble,
vtExtended);

TVarDef = record
 VarType: TVarType;
 PushStyle: TPushStyle;
end;

TAVarDef = array of TVarDef;

TCallType = (ctRegister, ctPascal, ctCdecl, ctStdcall, ctBuilt_in);

TFuncResult = (frInt8, frUInt8, frInt16, frUInt16, frInt32, frUInt32, frInt64, frSingle, frDouble,
frExtended);

TFunction = record
 name: string;
 CallType: TCallType;
 VarList: TAVarDef;
 FuncResult: TFuncResult;
 StackNeeds: Integer;
 FuncAddr: pointer;
 InlinePart: array of byte;
end;

TVariable = record
 name: string;
 VarType: TVarType;
 VarAddr: pointer;
end;

TTrigMode = (tmSafe, tmNothing, tmDelphi);

TOutOfOrder = (ooStandart, ooSoft, ooAgressive);

TEliminateBrackets = (ebStandart, ebSoft, ebAgressive);

TAlignMode = boolean;

TBackOperation = boolean;

TParallelExecution = boolean;
–––

Appendix B. Advanced syntax errors handling

To handle syntax errors in formula using Delphi exceptions, you may include the following unit:

Listing B.1. Syntax errors handling using Delphi exceptions (KCompilerEx.pas)
–––
unit KCompilerEx;

interface
uses
 KCompiler, SysUtils;

type
 TKCompilerEx = class(TKCompiler)
 procedure Compile; override;

 end;
 ECompError = class(Exception);

var
 Msgs : array [TError] of string =
 ('Compiled succesfully!',
 'Constant value cannot be represented in current format!',
 'Invalid numeric format!',
 'Value expected!',
 'Operation expected!',
 ''')'' expected!',
 'Uknown indefitier!',
 'Constant is out of range!',
 'Incompatible types!',
 'Types of formal and actual var parameters must be identical!',
 'Number of parameters doesn''t match function prototype!');

procedure Register;

implementation

procedure Register;
begin
 RegisterComponents('DOMIN', [TKCompilerEx]);
end;

{ TKCompilerEx }

procedure TKCompilerEx.Compile;
begin
 inherited;
 if CompError <> eNone then
 raise ECompError.Create(Msgs[CompError]);
end;

end.
–––

Legal notices

Copyright © 2002-2003 by DOMIN Software

The content of this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by DOMIN Software. DOMIN Software
assumes no responsibility or liability for any errors or inaccuracies that may appear in this
documentation.

All trademarks and logos are the property of their respective owners.

Partnership

I will appreciate all proposals and suggestions. If you will have any business or other proposals
please feel free to mail me.

If you have any questions about getting source code of described product, please send all your
offers to zgonnik@math.dvgu.ru

mailto:zgonnik@math.dvgu.ru

	1. About the KCompiler
	1.1. Welcome to the KCompiler
	1.2. How to use this document
	1.3. Features
	1.4. Installation
	1.5. License Agreement
	1.6. Purchasing
	1.6.1. Online registration on the Internet
	1.6.2. Phone, fax, postal mail

	1.7. Limitations of demo version
	1.8. Versions history
	1.9. About

	2. Common guidelines
	2.1. What is the formula
	2.2. Compiling expression
	2.3. Evaluating expression
	2.4. Syntax errors handling
	2.4.1. CompError property

	2.5. Coding guidelines
	2.6. KCompiler’s speed
	2.7. Generated code

	3. Configuring KCompiler
	3.1. Auto configuration
	3.1.1. AutoConfigure method
	3.1.2. TAutoConfigure type

	3.2. Expression simplifying
	3.3. Formula analyzing
	3.3.1. OutOfOrder property
	3.3.2. EliminateBrackets property

	3.4. Optimization set
	3.4.1. BackOperation property
	3.4.2. ParallelExecution property
	3.4.3. SmartLoad property

	3.5. Data alignment
	3.5.1. AlignMode property
	3.5.2. RegisterVarA function

	4. Variables
	4.1. Information about variable
	4.1.1. TVariable record
	4.1.2. TVariable.name field
	4.1.3. TVariable.VarType field
	4.1.4. TVariable.VarAddr field

	4.2. Variable list
	4.2.1. VarCode function
	4.2.2. RegisterVar function
	4.2.3. RegisterVarExt function
	4.2.4. GetVar function
	4.2.5. RemoveVar function
	4.2.6. ClearVars procedure
	4.2.7. FVariables field

	4.3. Data processing and compatibility with Delphi

	5. Functions
	5.1. Information about function
	5.1.1. TFunction record
	5.1.2. TFunction.name field
	5.1.3. TFunction.CallType field
	5.1.4. TFunction.VarList field
	5.1.5. TVarDef record
	5.1.6. TVarDef.VarType field
	5.1.7. TVarDef.PushStyle field
	5.1.8. TFunction.FuncResult field
	5.1.9. TFunction.StackNeeds field
	5.1.10. TFunction.FuncAddr field
	5.1.11. TFunction.Simplify field
	5.1.12. TFunction.InlinePart field

	5.2. Function list
	5.2.1. FuncCode function
	5.2.2. RegisterFunc function
	5.2.3. RegisterFuncExt function
	5.2.4. GetFunc function
	5.2.5. RemoveFunc function
	5.2.6. ClearFuncs procedure
	5.2.7. FFunctions field

	5.3. Parameters passing
	5.3.1. Differences between parameters passing
	5.3.2. Passing parameters with ctBuilt_in type
	5.3.3. Compatibility with Delphi
	5.3.4. Routines calling methods

	5.4. Built-in functions

	Appendix A. Set of types
	Appendix B. Advanced syntax errors handling
	Legal notices
	Partnership

